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Abstract

Variable selection has been discussed under many contexts and especially, a large literature has 

been established for the analysis of right-censored failure time data. In this article, we discuss an 

interval-censored failure time situation where there exist two sets of covariates with one being 

low-dimensional and having possible nonlinear effects and the other being high-dimensional. For 

the problem, we present a penalized estimation procedure for simultaneous variable selection and 

estimation, and in the method, Bernstein polynomials are used to approximate the involved 

nonlinear functions. Furthermore, for implementation, a coordinate-wise optimization algorithm, 

which can accommodate most commonly used penalty functions, is developed. A numerical study 

is performed for the evaluation of the proposed approach and suggests that it works well in 

practical situations. Finally the method is applied to an Alzheimer’s disease study that motivated 

this investigation.
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1 | INTRODUCTION

Variable selection has been discussed under many contexts and especially, a large literature 

has been established for the analysis of failure time data.1–7 However, most of the existing 

methods for failure time data only apply to right-censored data, and as discussed by many 
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authors, in practice, it is quite common that one may face interval-censored data, a more 

general type of failure time data that included right-censored data as a special case.8–13 By 

interval-censored data, we usually mean that the failure time of interest is observed only to 

belong to an interval and among others, one field that commonly generates such data is 

medical follow-up studies or clinical trials. In this article, we will discuss regression analysis 

of interval-censored data with the focus on simultaneous variable selection and estimation.

The Cox proportional hazards model is perhaps the most commonly used regression model 

for regression analysis of either right-censored or interval-censored data.9,14 The standard 

Cox model assumes that covariates have linear effects and one advantage with the Cox 

model is that a partial likelihood can be constructed for inference about regression 

parameters. In practice, however, sometimes covariates may have nonlinear effects or there 

exist two sets of covariates, one being low-dimensional demographic measurements or 

environmental factors and the other being high-dimensional biomarkers or gene expressions. 

For the latter situation, one main goal is often to identify important biomarkers while taking 

into account all demographic or environmental factors. Among others, Huang15 considered 

the partly linear additive Cox model and proposed a partial likelihood-based estimation 

procedure for right-censored data. Du et al,16 Long et al,17 and Ma and Du18 investigated the 

variable selection problem for right-censored data with two sets of covariates.

Although intuitively it may seem to be straightforward to generalize the variable selection 

procedures developed for the right-censored data to interval-censored data, it is actually 

quite challenging due to the much more complicated structures of interval-censored data 

than right-censored data. In particular, unlike with right-censored data, there is no simple 

partial likelihood function available for interval-censored data. In other word, for the latter, 

one has to deal with both regression parameters and the unknown baseline hazard function 

together. Several methods have been developed for variable selection of interval-censored 

failure time data arising from the Cox model. Among them, Scolas et al19 and Wu and 

Cook10 gave two parametric procedures and in particular, the latter assumed that the 

underlying unknown hazard function is a piecewise constant function. More recently, Zhao 

et al13 proposed a broken adaptive ridge (BAR) regression approach20 and established the 

asymptotic properties of the proposed method. Note that all three methods above apply only 

to the low-dimensional (n>p) situation and only considered linear covariate effects. In the 

following, we consider a situation where there exist two sets of covariates, with one set 

including high-dimensional variables and the other having have nonlinear effects.

The rest of the article is organized as follows. In Section 2, after the introduction of some 

notation and the model, a penalized likelihood estimation procedure will be presented for 

simultaneous variable selection and estimation. In the method, the sieve approach with 

Bernstein polynomials will be employed to approximate the nonlinear part of the model. For 

the implementation of the presented procedure, by following Lv and Fan,21 Lin and Lv,22 

and others, we will develop a coordinate-wise optimization algorithm in Section 3. Section 4 

presents some results obtained from an extensive simulation study conducted to assess the 

finite sample performance of the proposed method and they indicate that it works well for 

practical situations. In Section 5, we apply the presented approach to a set of interval-
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censored data arising from an Alzheimer’s disease (AD) study that motivated this 

investigation, and some discussion and concluding remarks are given in Section 6.

2 | PENALIZED VARIABLE SECTION AND ESTIMATION PROCEDURE

Consider a failure time study that involves two sets of covariates X ∈ ℛp and Z ∈ ℛq that 

may be related to the failure time of interest T. Suppose that X is a vector of high-

dimensional covariates such as biomarkers and Z is a vector of low-dimensional covariates 

such as demographic or baseline factors. To describe the covariates effects, we will assume 

that T follows the Cox model given by

λ(t ∣ X, Z) = λ0(t)exp β′X + ψ(Z) , (1)

where λ0(t) is an unknown baseline hazard function, β is a p-dimensional vector of 

regression parameters, and ψ(Z) = ∑j = 1
q ψj Zj  with ψj(·) being an unknown function for 

all j∈{1,2,…,q}. That is, the covariates Z may have nonlinear effects on T. For the 

identifiability of the model above, it will be assumed that all components of X and each 

ψj(Zj) are centered.15 In addition, we assume that the main focus will be to identify a small 

subset of X that is relevant with or predictive to T conditional on Z.

Suppose that the study consists of n independent subjects and the observed data have the 

form {(Li < Ti ≤ Ri, Xi, Zi), i = 1, … , n}. That is, for each i, the failure time Ti associated 

with subject i is known only to belong to the interval (Li,Ri] or only interval-censored data 

are available for the failure times Ti’s. In the following, we will assume that interval 

censoring is independent9. Then the likelihood function has the form

L β, Λ0, ψ = ∏
i = 1

n
exp −Λ0 Li eβ′Xi + ψ Zi − exp −Λ0 Ri eβ′Xi + ψ Zi .

Note that for either estimation or covariate selection based on the function above, one has to 

deal with the unknown functions Λ0 and ψj’s, which would make the task difficult. To 

address this, we propose to employ the sieve approach to first approximate them by 

Bernstein polynomials.

More specifically, let

Θ = β, Λ0, ψ1, …, ψq ∈ ℬ ⊗ ℳ0 ⊗ ℳ1 ⊗ … ⊗ ℳq

denote the parameter space. Here ℬ = β ∈ ℛp, ∥ β ∥ ≤ M  with M being a positive 

constant, ℳ0 is the collection of all bounded and continuous nondecreasing, nonnegative 

functions over the interval [c, u] with c and u usually taken to be min(Li) and max(Ri), 
respectively, and ℳj(j = 1, …, q) is the collection of all bounded and continuous functions 

over the interval [cj, uj] with cj and uj usually set to be min(Zj) and max(Zj), respectively. 

Also define the sieve space
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Θn = β, Λ0n, ψ1n, …, ψqn ∈ ℬ ⊗ ℳ0n ⊗ ℳ1n ⊗ … ⊗ ℳqn ,

where

ℳ0n = Λ0n(t) = ∑
k = 0

m0
ϕk

∗B0k t, m0, c, u : ∑
0 ≤ k ≤ m0

ϕk
∗ ≤ M0n, 0 ≤ ϕ0

∗ ≤ ϕ1
∗ ≤ … ≤ ϕm0

∗ ,

and

ℳjn = ψjn Zj = ∑
k = 0

mj
αjkBjk Zj, mj, cj, uj : ∑

0 ≤ k ≤ mj
αjk ≤ Mjn .

In the above, B0k(t,m0,c,u) and Bjk(Zj,mj,cj,uj) denote the Bernstein basis polynomials of m0 

and mj degree of freedoms given by

B0k t, m0, c, u =
m0
k

t − c
u − c

k
1 − t − c

u − c
m0 − k

, k = 0, 1, …, m0,

and

Bjk Zj, mj, cj, uj =
mj
k

Zj − cj
uj − cj

k
1 −

Zj − cj
uj − cj

mj − k
, k = 0, 1, …, mj,

respectively. Note that in ℳ0n, the constraint 0 ≤ ϕ0
∗ ≤ ϕ1

∗ ≤ … ≤ ϕm0
∗  can be easily removed 

by the reparameterization ϕ0
∗ = eϕ0, ϕl

∗ = ∑i = 0
l eϕi, ∀ 1 ≤ l ≤ m0.

Let ϕ = ϕ0, …, ϕm0 ′ and α = α10, …, α1m1, …, αq0, …, αqmq
′. For estimation of {β,Λ0n,ψ1n,

…,ψqn}, it is natural to consider the log-likelihood function

l(β, ϕ, α) = ∑
i = 1

n
log exp −Λ0n Li eβ′Xi + ∑j = 1

q ψjn Zj − exp −Λ0n Ri eβ′Xi + ∑j = 1
q ψjn Zj

over the sieve space Θn. This suggests that for the covariate selection, we can maximize the 

penalized likelihood function

lp(β, ϕ, α) = l(β, ϕ, α) − ∑
j = 1

p
Pλ |βj| , (2)

or estimate β using the profile likelihood approach, where Pλ(|βj|) denotes a penalty function 

characterized by the tuning parameter λ. For the maximization, in the next section, we will 

develop a coordinate-wise optimization algorithm that estimates β, ϕ, and α alternately.
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For the selection of the penalty function, we will consider several choices, including the 

LASSO penalty Pλ(|βj|) = λ |βj| proposed by Tibshirani,23 the SCAD penalty

Pλ |βj|; a =

λ|βj| if |βj| ≤ λ,

−
|βj|2 − 2aλ|βj| + λ2

2(a − 1) if λ < |βj| ≤ aλ,

(a + 1)λ2
2 if |βj| > aλ

with a > 2 by Fan and Li,24 the SICA penalty Pλ(|βj|;τ) = λ (τ+1) |βj|/(|βj|+τ) with τ > 0 by 

Lv and Fan,21 and the SELO penalty

Pλ |βj|; γ = λ
log(2) log

|βj|
|βj| + γ + 1

with γ > 0 by Dicker et al.25 In addition, we will investigate the use of the MCP

Pλ |βj|; a = λ∫0

|βj| (aλ − x)+
aλ dx

with a > 1 given in Zhang26 and the BAR penalty Pλ |βj| = λβj
2/βj

2 discussed in Liu and Li20 

and Zhao et al,13 where βj(j = 1, …, p) denotes a nonzero initial estimator of βj.

3 | COORDINATE-WISE OPTIMIZATION ALGORITHM

Let β , ϕ, and α denote the estimators of β, ϕ, and α given by the maximization of the 

penalized log likelihood function ℓp(β,ϕ,α). In the following, we will present a cyclic 

coordinate-wise optimization algorithm for the determination of β , ϕ, and α.

First, we will consider the determination of β  and for this, we will take turn to update each 

element βj of β while keeping all other elements of β as well as ϕ and α fixed at their current 

estimates. More specifically, define

g βj = ∑
i = 1

n
log exp −Λ0n Li e∑k = 1

q ψkn Zik + ∑l ≠ jβlXil + βjXij

− exp −Λ0n Ri e∑k = 1
q ψkn Zik + ∑l ≠ jβlXil + βjXij .

Then at the kth iteration, we need to determine β j
(k), the value of βj that maximizes 

h(βj)=g(βj)−Pλ(|βj|). Note that by borrowing the LQA idea discussed in Fan and Li,24 a 

penalty function P(|βj|;λ) can be locally approximated by a quadratic function at β j
(k − 1)  as

Pλ |βj| ≈ Pλ β j
(k − 1) + 1

2 Pλ′ β j
(k − 1) / β j

(k − 1) βj2 − β j
(k − 1) 2

.
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On the other hand, g(βj) can be approximated by the second-order Taylor expansion

g βj ≈ g β j
(k − 1) + g′ β j

(k − 1) βj − β j
(k − 1) + 1

2g″ β j
(k − 1) βj − β j

(k − 1) 2
,

where g′ and g″ denote the first and second derivatives of g, respectively. In consequence, 

the maximizing of h(βj) is equivalent to maximizing the function

g β j
(k − 1) + g′ β j

(k − 1) βj − β j
(k − 1) + 1

2g″ β j
(k − 1) βj − β j

(k − 1) 2
− Pλ β j

(k − 1)

− 1
2 Pλ′ β j

(k − 1) / β j
(k − 1) βj2 − β j

(k − 1) 2
,

with respect to βj, which gives a close form solution as

β j
(k) =

β j
(k − 1)g″ β j

(k − 1) − g′ β j
(k − 1)

g″ β j
(k − 1) − Pλ′ β j

(k − 1) / β j
(k − 1) . (3)

Note that it is easy to see that the approximation used above for the penalty function and the 

resulting solution (3) apply to any penalty function. However, this is not necessary for the 

BAR penalty due to the fact that it is already a quadratic function of coefficients. For the 

situation, by following the same procedure as above except the approximation, we can 

obtain the close form iterative solution as

β j
(k) = β j

(k − 1) −
ℎ′ β j

(k − 1)

ℎ″ β j
(k − 1) , (4)

where ℎ′ β j
(k − 1)  and ℎ″ β j

(k − 1)  are the first and second derivatives of 

ℎ βj = g βj − λβj
2/ β j

(k − 1) 2
 with respect to βj evaluated at β j

(k − 1), respectively. In addition, 

note that our experience indicates that in the iteration above for each element of β, one only 

needs to update the estimate once. This is because the algorithm will update the estimates of 

β, ϕ, and α alternately and there is little reason to find the estimates of β with a high 

precision in one iteration based on the current estimates of α and ϕ.

Now we consider the determination of the estimates of α with β and ϕ set at their current 

estimates and for this, a similar coordinate-wise optimization procedure can be developed. 

Specifically, define

S αjr = ∑
i = 1

n
log exp −Λ0n Li eβ ′Xi + αjrBjr + ∑k ≠ rαjkBjk + ∑l ≠ j ∑kαlkBlk

− exp −Λ0n Ri eβ ′Xi + αjrBjr + ∑k ≠ rαjkBjk + ∑l ≠ j ∑kαlkBlk .
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Then the following iterative solution can be used to update the estimate of αjl for all 1 ≤ j ≤ 

q, 1 ≤ r ≤ mj,

αjr
(k) = αjr

(k − 1) −
s′ αjr

(k − 1)

s″ αjr
(k − 1) , (5)

where αjr
(k) is the kth iteration result of the parameter αjr, s′ and s″ denote the first and 

second derivatives of s, respectively. Note that as mentioned above, to avoid the 

identification issue, all ψj(Zj) need to be centered. For this, let αjr
∗ = limk ∞αjr

(k) and define

ψjn
∗ Zj = ∑

r = 0

mj
αjr

∗ Bjr Zj, mj, cj, uj and ψjn∗ Zj = ∑
i = 1

n
ψjn

∗ Zij /n .

Then the final estimator of ψj(Zj) will be defined to be

ψjn Zj = ψjn
∗ Zj − ψjn∗ Zj , 1 ≤ j ≤ q .

For the determination of the estimate of ϕ in the iteration, we suggest to employ the Nelder-

Mead simplex algorithm since the coordinate-wise method may not be stable sometimes. 

The following gives the summary of the algorithm discussed above.

Step 1: Set k = 0 and choose the initial estimates ϕ(0)
, α(0), and β (0)

.

Step 2: At the kth iteration, obtain ϕ(k)
 by using the Nelder-Mead simplex 

algorithm with β = β (k − 1)
 and α = α(k − 1).

Step 3: Obtain αj
(k) by using the coordinate descent algorithm for j = 1,… ,q with 

β = β (k − 1)
 and ϕ = ϕ(k)

, and center ψjn
∗ Zj  for each j = 1,… ,q.

Step 4: With ϕ = ϕ(k)
 and α = α(k), use the coordinate descent algorithm to 

determine

β (k) = argmax
β

l β, ϕ(k), α(k) − ∑
j = 1

p
Pλ |βj| .

Step 5: Repeat Steps 2 to 4 until the convergence or k exceeding a given large 

number.

Note that for the better performance of the algorithm above, as with most algorithms, it is 

important to choose good initial estimates. For this, we suggest to use the ridge estimate or 

the estimate with the ridge penalty given by

Wu et al. Page 7

Stat Med. Author manuscript; available in PMC 2021 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



β (0) = βRidge  = argmax
β

l(β, ϕ, α) − ξ ∑
j = 1

p
βj2

with the application of the algorithm above, where ξ is another tuning parameter to be 

discussed below. To check the convergence in Step 5 above, one may apply various criteria. 

In the numerical studies below, we used the mean absolute difference between the 

consecutive estimates of all parameters defined as 

N−1 θ(k) − θ(k − 1)
1 = N−1∑l = 1

N θ l
(k) − θ l

(k − 1) < ϵ with setting ϵ = 10−4. Here θ = (ϕ′,α

′,β′)′, N denotes the dimension of θ, and θl
(k)

 represents the lth component of θ(k)
.

To implement the algorithm above, also one needs to choose both tuning parameters ξ and λ 
and for this, the simulation study below suggests that the estimation results seem to be 

robust with ξ and one only needs to choose λ. Furthermore, the BAR estimator appears to 

be robust when fixing λ to be 0.5 ln(n) − 2 for both n>p and n<p cases. For the results given 

below and other penalty functions, we used the K-fold cross-validation (CV)27 to select the 

optimal λ. Of course, one could employ other methods such as Bayesian information 

criterion28 or the generalized cross-validation.5,29

4 | A SIMULATION STUDY

Now we present some results obtained from an extensive simulation study conducted to 

assess the performance of the variable selection procedure proposed in the previous sections. 

To generate the simulated data, we first generated a p-dimensional vector of covariates Xi 

from the multivariate normal distribution with mean zero and the covariance matrix ΣX 

whose (l,k) element is 0.5|l−k|. In addition, we generated covariates Z1 and Z2 independently 

both from the standard normal distribution and Z3 and Z4 independently both from the 

uniform distribution over (0,1). That is, q = 4. By setting ψ1(Z1i) = 2Z1i, 

ψ2 Z2i = 0.2Z2i
2 + 0.5Z2i − 0.5, ψ3(Z3i) = sin(2πZ3i) and ψ4(Z4i) = cos(2πZ4i), the true 

failure times Ti’s were then generated from model (1) with Λ0(t) = t or log(t + 1). For the 

generation of interval-censored observations, it was assumed that each subject can be 

observed at each of 10 equally spaced time points between 0 and τ = 3 with the probability 

0.5 independently. For subject i, Li was defined to be the largest observation time point less 

than Ti and Ri the smallest observation time point greater than Ti. The results given below 

are based on n =300 and p = 500 or 1000 with 100 replications.

Tables 1,2 and 3 give the results on the covariate selection given by the proposed approach 

with Λ0(t) = t, log(t + 1) and exp(t/10) − 1, respectively. Here it was supposed that either 4 

or 10 components (s = 4 or 10) of β were set to be nonzero (1 or −1) and the remaining to be 

0. In the study, we considered the six penalty functions discussed above, BAR, LASSO, 

MCP, SCAD, SELO, and SICA penalty functions, and set the degrees of Bernstein 

polynomials to be m0=m1=…=m4=3. For the two tuning parameters, as mentioned above, ξ 
and λ were fixed at 100 and λ = 0.5 ln(n) − 2, respectively, for the BAR penalty, and for the 

other penalties, ξ was fixed at 100 and the CV was used for the selection of λ. In the tables, 
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we calculated the median of MSE among 100 replications (MMSE), the standard deviation 

of MSE (SD), the averaged number of nonzero estimates of parameters whose true values 

are not zero (TP) or are zero (FP), respectively, the mean number of misclassified 

coefficients (MC) and the average size of the estimated final models (MS). Here, the MSE 

was defined to be β − β0
TΣX β − β0  with β0 denoting the true value of β.

One can see from the tables that the proposed variable selection procedure with all penalty 

functions seems to perform reasonably well and similarly in terms of the true positive rate, 

TP. On the other hand, based on the other criteria, the method with the BAR penalty function 

appears to perform better than the method with other penalty functions. In particular, the 

BAR penalty yielded smaller false positive rate, FP, and smaller estimated models, MS, and 

tends to select less unimportant or un-relevant covariates, MC, than the other penalty 

functions. As expected, the LASSO penalty function tends to select more unimportant 

covariates or noise and yielded more complicated models.

To see the performance of the proposed approach on estimation of the nonlinear covariate 

effects ψj’s, Figures 1 and 2 show the averages of the estimates of each of the four ψj’s 

along with the true effects with Λ0(t)=t and log(t + 1), respectively. They indicate that the 

approach based the Bernstein polynomials with the degrees of freedom being 3 seems to 

perform reasonably well for the situations considered. We also considered some other set-

ups and obtained similar results.

5 | AN APPLICATION

In this section, we apply the method presented in the previous sections to the data arising 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a longitudinal multicenter 

study that was launched in 2003 as a public-private partnership and led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography, other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early AD.30–33 Here, we are interested 

in identifying the single nucleotide polymorphisms (SNPs) that have significant effects on 

the risk of developing AD.

In the study, the participants were recruited across North America and followed and 

reassessed periodically to track the pathology of the disease as it progresses. Also the 

participants have been divided into three groups based on the levels of their cognitive 

conditions, cognitively normal, MCI, and AD. In the following, by following the others,
30,32,33 we will focus on the group of the participants with MCI and the time from the 

baseline visit date to the AD conversion, the failure time of interest. Since the participants 

were only examined intermittently, the AD conversion thus cannot be observed exactly and 

is known only to between the last examination time when the AD had not occurred and the 

first examination time when the AD has already occurred. In other words, we only have 

interval-censored data on the failure time of interest.
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For the analysis below, we will consider 280 participants who have complete information on 

four important demographic and clinical factors suggested by Li et al30 and the 327 354 

SNPs with the focus on identifying the SNPs that have significant effects on the risk of 

developing AD, one of the main goals of ADNI. The four covariate are participants’ 

Alzheimer’s Disease Assessment Scale Score of 13 items (ADAS13), Rey auditory verbal 

learning test score of immediate recall (RAVLT.i), functional assessment questionnaire score 

(FAQ) and MRI volume of middle temporal gyrus (MidTemp). The SNPs were read by 

Illumina method and to convert SNPs into covariates, by following Li et al,32 we treated T as 

the effect allete and coded each SNP as 0, 1, or 2 if it is homozygous without T, 

heterozygous with T or homozygous with T, respectively.

Before the application of the proposed variable selection procedure, it is apparent that we 

need to reduce the dimensionality, and for this, we first employed the mid-point imputation 

method to convert the interval-censored data to right-censored data and then applied the sure 

independent screening (SIS)34 to identify the top SNPs. Figure 3 presents the top 3000 log 

partial likelihood function values from the largest to the smallest and it seems to suggest that 

it suffices to consider the top 500 SNPs. Table 4 presents the covariate selection results given 

by applying the proposed approach with the use of same penalty functions considered in the 

simulation study to the data with the top 500 SNPs and the four demographic and clinical 

covariates, ADAS13, RAVLT.i, FAQ, and MidTemp. Also as in the simulation study, the CV 

and the same degrees of freedom, 3, were used for the selection of the tuning parameter λ 
and for all Bernstein polynomials used to approximate the cumulative baseline hazard 

function and the nonlinear covariate effects ψ(·)’s, respectively.

In Table 4, for each of the 32 SNPs selected by the six penalty functions, the estimated effect 

is provided along with the estimated standard error in the parentheses obtained by using the 

bootstrap procedure with 100 bootstrap samples. Among the selected SNPs, only four, 

rs12454238, rs1397228, rs1475950, and rs2175859, which are located in chromosome 18, 3, 

5, and 7, respectively, had significant effects on the AD conversion. In particular, it seems 

that the presence of allele T in the SNP rs1475950 and the absence of allele T in the SNPs 

rs12454238, rs1397228, and rs2175859 increased the risk of AD conversion for the subjects 

with MCI. Figure 4 displays the estimated four nonlinear covariate effects and indicates that 

higher ADAS13 and MidTemp were related to the increasing risk of the AD conversion. By 

contrast, lower RAVLT.i and FAQ seem to cause the increasing of the AD conversion risk. 

The conclusions here are similar to those given by the others who analyzed the same study. 

On the other hand, it is worth pointing out that most of the previous work only considered a 

part of the data or performed simplified analyses. For instance, Li et al30 considered only the 

demographic and clinical factors and Li et al32 and Hu et al33 performed a single SNP 

analysis.

To give a graphical idea about the analysis result, Figure 5 presents the estimates of the 

baseline survival function given by the proposed approach with the use of the six penalty 

functions mentioned above. One can see from the figure that they are quite close to each 

other or robust with respect to the penalty function. For comparison, we also obtained the 

Kaplan-Meier estimate of the general survival function by simplifying the observed data to 

right-censored data and treating all subjects arising from a homogeneous population and 
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include it in Figure 5 too. It is interesting to see that the Kaplan-Meier estimate is quite close 

to the model-based estimates for the early period.

6 | DISCUSSION AND CONCLUDING REMARKS

This article discussed the variable selection and estimation for regression analysis of high-

dimensional interval-censored data arising from a partly linear additive Cox model and for 

the problem, a penalized variable selection procedure was developed and shown through 

numerical studies to work well for practical situations. In the method, Bernstein polynomials 

were used to approximate the nonlinear covariate effects as well as the unknown cumulative 

hazard function. Note that instead of Bernstein polynomials, one can employ other types of 

polynomials or smooth functions and develop the variable selection methods similarly as 

above. For the implementation, a coordinate-wise optimization algorithm, which can 

accommodate most of the existing penalty functions, was developed. The presented 

approach was then applied to the data from ADNI that motivated this study.

Note that in the proposed variable selection procedure, we used Bernstein polynomials in the 

sieve approach and it is apparent that a similar method can be developed if one instead 

employs other smooth functions such as some spline functions. As mentioned above, Zhao 

et al13 considered the same problem discussed here but only for the standard Cox model 

with linear covariate effects and the situation of p<n. In particular, their optimization 

algorithm cannot be used for or generalized to high-dimensional covariate situation. This is 

because it makes use of the Cholesky decomposition of a matrix and involves the inversion 

of a p×p matrix, which is not only unstable and problematic but also very time consuming 

when p is very large. By contrast, as shown in the simulation study, the coordinate-wise 

optimization method given above is much faster for the maximization and can easily handle 

the high-dimensional (p>n) situation.

There exist several directions for future research. One is that it would be helpful to establish 

the asymptotic properties of the proposed estimators of the covariate effects as well as the 

survival function such as their consistency. For this, one needs to deal with several 

difficulties or factors such as the nonparametric estimation involved and the large p and 

small p factor. Another direction is that instead of model (1), one may be interested in or 

prefer to employ the additive Cox model

Λ(t; X) = Λ0(t)exp ϕ(X)

and develop a variable selection and estimation procedure, where ϕ(X) = ∑j = 1
p ϕj Xj  with 

ϕj(Xj) being an unknown function of Xj. It is easy to see that this would be much more 

challenging than the problem discussed above. To follow the idea above, one possible 

approach is to approximate the ϕj(·)’s by using spline functions or Bernstein polynomials 

and then to employ some group penalization such as group LASSO.35

In the preceding sections, our focus has been on the main efforts of covariates and 

sometimes one may be interested in some interaction effects and thus developing the 

corresponding methods. Although it may seem to be straightforward, the generalization of 
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the proposed method to or development of a method allowing for the selection of interaction 

effects is nontrivial or not easy.36–39 Among others, under the current context, one issue that 

one needs to consider and would affect how a variable selection procedure will be developed 

is what type of interaction effects from the two sets of covariates considered above are of 

interest. One choice would be the interaction effects only between low-dimensional 

covariates and high-dimensional covariates and another would be the interaction effects only 

among high-dimensional covariates. For the former, one would have to deal with nonlinear 

interaction effects, which may be quite difficult. For the latter, the problem is relatively easy 

as one faces linear interaction effects. To deal with it, one may borrow the idea behind the 

regularization algorithm under marginality principle method discussed in Hao et al,36 who 

considered the linear model situation.
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FIGURE 1. 
Estimated nonlinear covariate effects ψ with Λ0(t)=t
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FIGURE 2. 
Estimated nonlinear covariate effects ψ with Λ0(t) = log(t + 1)
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FIGURE 3. 
Top 3000 SNPs selected by sure independent screening
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FIGURE 4. 
Estimated nonlinear covariate effects
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FIGURE 5. 
Estimated survival functions
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TABLE 1

Simulation results on covariate selection with Λ0(t)=t

Method MMSE (SD) TP FP MC MS

p = 500 and s = 4

BAR 0.068 (0.101) 3.99 0.19 0.2 4.18

LASSO 0.748 (0.226) 3.99 5.99 6 9.98

MCP 0.069 (0.278) 4 0.69 0.69 4.69

SCAD 0.135 (0.259) 3.93 1.36 1.43 5.29

SELO 0.087 (0.218) 3.97 0.6 0.63 4.57

SICA 0.078 (0.193) 3.97 0.45 0.48 4.42

p = 500 and s = 10

BAR 0.499 (0.893) 9.48 0.2 0.72 9.68

LASSO 2.996 (0.629) 9.98 17.1 17.12 27.08

MCP 0.479 (0.688) 9.74 0.91 1.17 10.65

SCAD 1.453 (1.429) 8.7 1.07 2.37 9.77

SELO 0.550 (0.920) 9.56 0.97 1.41 10.53

SICA 0.578 (0.865) 9.55 1.01 1.46 10.56

p = 1000 and s = 4

BAR 0.070 (0.174) 3.98 0.17 0.19 4.15

LASSO 0.798 (0.243) 4 7.25 7.25 11.25

MCP 0.097 (0.151) 4 0.42 0.42 4.42

SCAD 0.218 (0.535) 3.78 1.42 1.64 5.2

SELO 0.092 (0.232) 3.99 0.73 0.74 4.72

SICA 0.089 (0.271) 3.96 0.5 0.54 4.46

p = 1000 and s = 10

BAR 2.233 (1.517) 8.49 0.23 1.74 8.72

LASSO 3.503 (0.672) 9.94 17.33 17.39 27.27

MCP 0.839 (1.352) 9.26 1 1.74 10.26

SCAD 2.441 (2.050) 7.83 2.05 4.23 9.88

SELO 1.366 (1.117) 9.16 1.68 2.52 10.84

SICA 1.568 (1.824) 8.44 1.76 3.32 10.2
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TABLE 2

Simulation results on covariate selection with Λ0(t) = log(t + 1)

Method MMSE (SD) TP FP MC MS

p = 500 and s = 4

BAR 0.072 (0.112) 4 0.17 0.17 4.17

LASSO 0.694 (0.250) 4 6.6 6.6 10.6

MCP 0.107 (0.331) 3.98 0.8 0.82 4.78

SCAD 0.175 (0.335) 3.99 1.76 1.77 5.75

SELO 0.121 (0.391) 3.98 1 1.02 4.98

SICA 0.114 (0.356) 3.98 0.78 0.8 4.76

p = 500 and s = 10

BAR 1.518 (1.226) 9.06 0.35 1.29 9.41

LASSO 3.271 (0.668) 9.96 16.02 16.06 25.98

MCP 0.880 (0.939) 9.46 1.11 1.65 10.57

SCAD 1.757 (1.481) 8.52 2.06 3.54 10.58

SELO 1.201 (1.070) 9.32 1.51 2.19 10.83

SICA 1.305 (1.235) 9.08 1.23 2.15 10.31

p = 1000 and s = 4

BAR 0.077 (0.275) 3.97 0.1 0.13 4.07

LASSO 0.697 (0.267) 4 7.21 7.21 11.21

MCP 0.088 (0.340) 3.99 0.6 0.61 4.59

SCAD 0.157 (0.537) 3.76 0.57 0.81 4.33

SELO 0.123 (0.454) 3.92 0.58 0.66 4.5

SICA 0.109 (0.481) 3.89 0.46 0.57 4.35

p = 1000 and s = 10

BAR 2.910 (1.570) 7.97 0.26 2.29 8.23

LASSO 3.630 (0.640) 9.95 18.12 18.17 28.07

MCP 1.157 (1.362) 9.12 1.48 2.36 10.6

SCAD 1.814 (1.438) 8.48 2.24 3.76 10.72

SELO 1.403 (1.433) 8.89 1.75 2.86 10.64

SICA 1.425 (1.494) 8.90 1.58 2.68 10.48
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TABLE 3

Simulation results on covariate selection with Λ0(t) = exp(t/10) – 1

Method MMSE (SD) TP FP MC MS

p = 500 and s = 4

BAR 0.139 (0.561) 3.67 0.04 0.37 3.71

LASSO 2.589 (0.412) 3.97 7.88 7.91 11.85

MCP 0.129 (0.357) 3.97 0.66 0.69 4.63

SCAD 0.274 (0.552) 3.74 1.13 1.39 4.87

SELO 0.201 (0.435) 3.85 0.63 0.78 4.48

SICA 0.177 (0.432) 3.84 0.44 0.6 4.28

p = 500 and s = 10

BAR 1.403 (1.049) 9.12 1.16 2.04 10.28

LASSO 7.392 (0.564) 9.74 23.53 23.79 33.27

MCP 1.451 (1.407) 9.39 0.84 1.45 10.23

SCAD 1.911 (1.069) 8.71 3.88 5.17 12.59

SELO 1.410 (0.893) 9.23 2.32 3.09 11.55

SICA 1.407 (0.876) 9.19 2.06 2.87 11.25

p = 1000 and s = 4

BAR 0.234 (0.507) 3.86 0.82 0.96 4.68

LASSO 2.539 (0.432) 3.96 13.82 13.86 17.78

MCP 0.163 (0.512) 3.98 0.67 0.69 4.65

SCAD 0.399 (0.599) 3.7 1.49 1.79 5.19

SELO 0.395 (0.515) 3.85 1.5 1.65 5.35

SICA 0.341 (0.552) 3.82 1.21 1.39 5.03

p = 1000 and s = 10

BAR 2.685 (1.432) 8.06 1.51 3.45 9.57

LASSO 8.237 (0.577) 9.49 28.51 29.02 38

MCP 2.935 (1.777) 8.93 1.94 3.01 10.87

SCAD 4.377 (1.632) 6.58 1.33 4.75 7.91

SELO 2.704 (1.459) 8.02 2.15 4.13 10.17

SICA 2.855 (1.493) 7.9 1.89 3.99 9.79
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TABLE 4

Variable selection and estimation results for the ADNI data

SNP Name BAR LASSO SCAD MCP SELO SICA

rs10089267 − (–) − (–) −0.202(0.155) −0.186(0.156) − (–) − (–)

rs10150971 −0.228(0.189) − (–) −0.216(0.178) −0.251(0.215) −0.243(0.204) −0.242(0.212)

rs10165919 − (–) −0.042(0.084) −0.228(0.153) −0.226(0.123) −0.174(0.144) −0.170(0.121)

rs1023106 −0.092(0.165) − (–) −0.213(0.157) −0.241(0.145) −0.192(0.152) −0.188(0.146)

rs10435804 −0.233(0.282) − (–) − (–) −0.279(0.250) −0.316(0.231) −0.319(0.246)

rs10512390 − (–) − (–) −0.228(0.177) − (–) − (–) − (–)

rs10513829 −0.149(0.13) −0.065(0.091) −0.153(0.150) − (–) − (–) − (–)

rs10520450 − (–) −0.042(0.090) − (–) − (–) − (–) − (–)

rs10780472 − (–) −0.070(0.080) − (–) − (–) − (–) − (–)

rs10799802 − (–) −0.067(0.102) − (–) − (–) − (–) − (–)

rs10821495 − (–) −0.035(0.065) − (–) − (–) − (–) − (–)

rs10854810 − (–) 0.011(0.087) − (–) − (–) − (–) − (–)

rs108609 − (–) −0.115(0.102) − (–) − (–) − (–) − (–)

rs11027723 − (–) −0.046(0.084) − (–) − (–) − (–) − (–)

rs11131137 − (–) −0.049(0.079) − (–) − (–) − (–) − (–)

rs1160728 − (–) −0.070(0.096) − (–) − (–) − (–) − (–)

rs11647526 − (–) −0.13(0.132) − (–) − (–) − (–) − (–)

rs11704226 − (–) −0.074(0.091) − (–) − (–) − (–) − (–)

rs12454238 −0.497(0.134) −0.329(0.156) −0.431(0.184) −0.425(0.138) −0.441(0.135) −0.442(0.129)

rs12555515 − (–) 0.040(0.098) − (–) − (–) − (–) − (–)

rs12589973 − (–) −0.137(0.109) − (–) − (–) − (–) − (–)

rs13037957 − (–) −0.165(0.107) − (–) − (–) − (–) − (–)

rs1330312 − (–) − (–) 0.294(0.171) − (–) − (–) − (–)

rs138957 −0.271(0.174) −0.126(0.068) − (–) − (–) − (–) − (–)

rs1397228 −0.366(0.139) −0.124(0.114) −0.439(0.163) −0.446(0.132) −0.433(0.147) −0.434(0.134)

rs1467025 0.168(0.126) 0.113(0.081) − (–) 0.196(0.139) 0.165(0.120) 0.161(0.134)

rs1475950 0.793(0.224) 0.045(0.090) 0.888(0.352) 0.878(0.227) 0.816(0.244) 0.814(0.225)

rs1619465 − (–) 0.090(0.103) − (–) − (–) − (–) − (–)

rs1638438 − (–) 0.052(0.062) − (–) − (–) − (–) − (–)

rs2050635 − (–) −0.018(0.11) − (–) − (–) − (–) − (–)

rs2175859 −0.482(0.199) −0.033(0.083) − (–) −0.553(0.172) −0.598(0.182) −0.601(0.171)

rs2428754 0.252(0.211) 0.040(0.088) − (–) 0.399(0.210) 0.368(0.223) 0.360(0.203)
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